Perturbation Analysis of the QR factor R in the context of LLL lattice basis reduction

نویسندگان

  • Xiao-Wen Chang
  • Damien Stehlé
  • Gilles Villard
چکیده

In 1982, Arjen Lenstra, Hendrik Lenstra Jr. and László Lovász introduced an efficiently computable notion of reduction of basis of a Euclidean lattice that is now commonly referred to as LLL-reduction. The precise definition involves the R-factor of the QR factorization of the basis matrix. In order to circumvent the use of rational/exact arithmetic with large bit-sizes, it is tempting to consider using floating-point arithmetic with small precision to compute the R-factor. In the present article, we investigate the accuracy of the factor R of the QR factorisation of an LLL-reduced basis. Our main contribution is the first fully rigorous perturbation analysis of the R-factor of LLL-reduced matrices under columnwise perturbations. Our results are very useful to devise LLL-type algorithms relying on floating-point approximations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes and Lattices in Cryptography

We compare Schnorr's algorithm for semi block 2k-reduction of lattice bases with Koy's primal-dual reduction for blocksize 2k. Koy's algorithm guarantees within the same time bound under known proofs better approximations of the shortest lattice vector. Under reasonable heuristics both algorithms are equally strong and much better than proven in worst-case. We combine primal-dual reduction with...

متن کامل

Experimental quality evaluation of lattice basis reduction methods for decorrelating low-dimensional integer least squares problems

Reduction can be important to aid quickly attaining the integer least squares (ILS) estimate from noisy data. We present an improved Lenstra-Lenstra-Lovasz (LLL) algorithm with fixed complexity by extending a parallel reduction method for positive definite quadratic forms to lattice vectors. We propose the minimum angle of a reduced basis as an alternative quality measure of orthogonality, whic...

متن کامل

A modified LLL algorithm for change of ordering of Grobner basis

In this paper, a modied version of LLL algorithm, which is a an algorithm with output-sensitivecomplexity, is presented to convert a given Grobner basis with respect to a specic order of a polynomialideal I in arbitrary dimensions to a Grobner basis of I with respect to another term order.Also a comparison with the FGLM conversion and Buchberger method is considered.

متن کامل

An LLL-Reduction Algorithm with Quasi-linear Time Complexity1

We devise an algorithm, e L, with the following specifications: It takes as input an arbitrary basis B = (bi)i ∈ Zd×d of a Euclidean lattice L; It computes a basis of L which is reduced for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time O(dβ + dβ) where β = log max ‖bi‖ (for any ε > 0 and ω is a valid exponent for matrix multiplication). This is the first LLL...

متن کامل

An LLL-reduction algorithm with quasi-linear time complexity

We devise an algorithm, e L, with the following specifications: It takes as input an arbitrary basis B = (bi)i ∈ Zd×d of a Euclidean lattice L; It computes a basis of L which is reduced for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time O(dβ + dβ) where β = log max ‖bi‖ (for any ε > 0 and ω is a valid exponent for matrix multiplication). This is the first LLL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2012